期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2016
卷号:6
期号:6
页码:2863-2869
DOI:10.11591/ijece.v6i6.pp2863-2869
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Scooby Smart Trash can is a trash can equipped with artificial intelligence algorithms that is able to capture and clean up garbages thrown by people who do not care about the environment. The can is called smart because it acts like scoobydoo in a children's cartoon in that the can will react if there is garbage thrown and it catches and cleans them up. This paper presents pursuit algorithm that uses cell decomposition algorithm in which algorithms are used to create a map of the robot's path and fuzzy algorithm as one of the artificial intelligence algorithm for robot path planning. By using the combined algorithms, the robot is able to pursuit and chases the trash carelessly discarded, but it has not been able to find the shortest distance. Therefore, this paper considers a second modification of the algorithm by adding a potential field algorithm used to add weight values on the map, so that the robot can pursue trash by finding the shortest path. The proposed algorithm shows that the robot can avoid obstacles and find the shortest path so that the time required to get to the destination point is fast.
其他摘要:Scooby Smart Trash can is a trash can equipped with artificial intelligence algorithms that is able to capture and clean up garbages thrown by people who do not care about the environment. The can is called smart because it acts like scoobydoo in a children's cartoon in that the can will react if there is garbage thrown and it catches and cleans them up. This paper presents pursuit algorithm that uses cell decomposition algorithm in which algorithms are used to create a map of the robot's path and fuzzy algorithm as one of the artificial intelligence algorithm for robot path planning. By using the combined algorithms, the robot is able to pursuit and chases the trash carelessly discarded, but it has not been able to find the shortest distance. Therefore, this paper considers a second modification of the algorithm by adding a potential field algorithm used to add weight values on the map, so that the robot can pursue trash by finding the shortest path. The proposed algorithm shows that the robot can avoid obstacles and find the shortest path so that the time required to get to the destination point is fast.