首页    期刊浏览 2025年07月17日 星期四
登录注册

文章基本信息

  • 标题:Bandwidth Selection in Deconvolution Kernel Distribution Estimators Defined by Stochastic Approximation Method with Laplace Errors
  • 本地全文:下载
  • 作者:Yousri Slaoui
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2016
  • 卷号:46
  • 期号:1
  • 页码:1-26
  • DOI:10.14490/jjss.46.1
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:

    In this paper we consider the kernel estimators of a distribution function defined by the stochastic approximation algorithm when the observation are contamined by measurement errors. It is well known that this estimators depends heavily on the choice of a smoothing parameter called the bandwidth. We propose a specific second generation plug-in method of the deconvolution kernel distribution estimators defined by the stochastic approximation algorithm. We show that, using the proposed bandwidth selection and the stepsize which minimize the MISE (Mean Integrated Squared Error), the proposed estimator will be better than the classical one for small sample setting when the error variance is controlled by the noise to signal ratio. We corroborate these theoretical results through simulations and a real dataset.

  • 关键词:Bandwidth selection;deconvolution;distribution estimation;plug-in methods;stochastic approximation algorithm
国家哲学社会科学文献中心版权所有