首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Bayesian Analysis for Penalized Spline Regression Using WinBUGS
  • 本地全文:下载
  • 作者:Ciprian M. Crainiceanu ; David Ruppert ; Matthew P. Wand
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2005
  • 卷号:14
  • 期号:1
  • 页码:1-24
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.
国家哲学社会科学文献中心版权所有