首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models
  • 本地全文:下载
  • 作者:Robert B. Gramacy
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2007
  • 卷号:19
  • 期号:1
  • 页码:1-46
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential) design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages), are also provided for visualization of tgp objects.
国家哲学社会科学文献中心版权所有