首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R
  • 本地全文:下载
  • 作者:Patrick Mair ; Reinhold Hatzinger
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2007
  • 卷号:20
  • 期号:1
  • 页码:1-20
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Item response theory models (IRT) are increasingly becoming established in social science research, particularly in the analysis of performance or attitudinal data in psychology, education, medicine, marketing and other fields where testing is relevant. We propose the R package eRm (extended Rasch modeling) for computing Rasch models and several extensions. A main characteristic of some IRT models, the Rasch model being the most prominent, concerns the separation of two kinds of parameters, one that describes qualities of the subject under investigation, and the other relates to qualities of the situation under which the response of a subject is observed. Using conditional maximum likelihood (CML) estimation both types of parameters may be estimated independently from each other. IRT models are well suited to cope with dichotomous and polytomous responses, where the response categories may be unordered as well as ordered. The incorporation of linear structures allows for modeling the effects of covariates and enables the analysis of repeated categorical measurements. The eRm package fits the following models: the Rasch model, the rating scale model (RSM), and the partial credit model (PCM) as well as linear reparameterizations through covariate structures like the linear logistic test model (LLTM), the linear rating scale model (LRSM), and the linear partial credit model (LPCM). We use an unitary, efficient CML approach to estimate the item parameters and their standard errors. Graphical and numeric tools for assessing goodness-of-fit are provided.
国家哲学社会科学文献中心版权所有