首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:CCA: An R Package to Extend Canonical Correlation Analysis
  • 本地全文:下载
  • 作者:Ignacio González ; Sébastien Déjean ; Pascal G. P. Martin
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2008
  • 卷号:23
  • 期号:1
  • 页码:1-14
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Canonical correlations analysis (CCA) is an exploratory statistical method to highlight correlations between two data sets acquired on the same experimental units. The cancor() function in R (R Development Core Team 2007) performs the core of computations but further work was required to provide the user with additional tools to facilitate the interpretation of the results. We implemented an R package, CCA, freely available from the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/), to develop numerical and graphical outputs and to enable the user to handle missing values. The CCA package also includes a regularized version of CCA to deal with data sets with more variables than units. Illustrations are given through the analysis of a data set coming from a nutrigenomic study in the mouse.
国家哲学社会科学文献中心版权所有