首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors
  • 本地全文:下载
  • 作者:Juned Siddique ; Ofer Harel
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2009
  • 卷号:29
  • 期号:1
  • 页码:1-18
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:In this paper we describe MIDAS: a SAS macro for multiple imputation using distance aided selection of donors which implements an iterative predictive mean matching hot-deck for imputing missing data. This is a flexible multiple imputation approach that can handle data in a variety of formats: continuous, ordinal, and scaled. Because the imputation models are implicit, it is not necessary to specify a parametric distribution for each variable to be imputed. MIDAS also allows the user to address the sensitivity of their inferences to different assumptions concerning the missing data mechanism. An example using MIDAS to impute missing data is presented and MIDAS is compared to existing missing data software.
国家哲学社会科学文献中心版权所有