首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models
  • 作者:Robert B. Gramacy ; Matthew Alan Taddy
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2010
  • 卷号:33
  • 期号:1
  • 页码:1-48
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP) models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART), to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007).
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有