摘要:In longitudinal studies measurements are often collected on different types of outcomes for each subject. These may include several longitudinally measured responses (such as blood values relevant to the medical condition under study) and the time at which an event of particular interest occurs (e.g., death, development of a disease or dropout from the study). These outcomes are often separately analyzed; however, in many instances, a joint modeling approach is either required or may produce a better insight into the mechanisms that underlie the phenomenon under study. In this paper we present the R package JM that fits joint models for longitudinal and time-to-event data.