首页    期刊浏览 2024年11月22日 星期五
登录注册

文章基本信息

  • 标题:sparr: Analyzing Spatial Relative Risk Using Fixed and Adaptive Kernel Density Estimation in R
  • 本地全文:下载
  • 作者:Tilman M. Davies ; Martin L. Hazelton ; Jonathan. C Marshall
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2011
  • 卷号:39
  • 期号:1
  • 页码:1-14
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:The estimation of kernel-smoothed relative risk functions is a useful approach to examining the spatial variation of disease risk. Though there exist several options for performing kernel density estimation in statistical software packages, there have been very few contributions to date that have focused on estimation of a relative risk function per se . Use of a variable or adaptive smoothing parameter for estimation of the individual densities has been shown to provide additional benefits in estimating relative risk and specific computational tools for this approach are essentially absent. Furthermore, little attention has been given to providing methods in available software for any kind of subsequent analysis with respect to an estimated risk function. To facilitate analyses in the field, the R package sparr is introduced, providing the ability to construct both fixed and adaptive kernel-smoothed densities and risk functions, identify statistically significant fluctuations in an estimated risk function through the use of asymptotic tolerance contours, and visualize these objects in flexible and attractive ways.
国家哲学社会科学文献中心版权所有