首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:MatchIt: Nonparametric Preprocessing for Parametric Causal Inference
  • 本地全文:下载
  • 作者:Daniel Ho ; Kosuke Imai ; Gary King
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2011
  • 卷号:42
  • 期号:1
  • 页码:1-28
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily fits into existing research practices since, after preprocessing data with MatchIt , researchers can use whatever parametric model they would have used without MatchIt , but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. MatchIt is an R program, and also works seamlessly with Zelig .
国家哲学社会科学文献中心版权所有