首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:poLCA: An R Package for Polytomous Variable Latent Class Analysis
  • 本地全文:下载
  • 作者:Drew A. Linzer ; Jeffrey B. Lewis
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2011
  • 卷号:42
  • 期号:1
  • 页码:1-29
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:poLCA is a software package for the estimation of latent class and latent class regression models for polytomous outcome variables, implemented in the R statistical computing environment. Both models can be called using a single simple command line. The basic latent class model is a finite mixture model in which the component distributions are assumed to be multi-way cross-classification tables with all variables mutually independent. The latent class regression model further enables the researcher to estimate the effects of covariates on predicting latent class membership. poLCA uses expectation-maximization and Newton-Raphson algorithms to find maximum likelihood estimates of the model parameters.
国家哲学社会科学文献中心版权所有