首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Nonparametric Regression via StatLSSVM
  • 本地全文:下载
  • 作者:Kris De Brabanter ; Johan Suykens ; Bart De Moor
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2013
  • 卷号:55
  • 期号:1
  • 页码:1-21
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:We present a new MATLAB toolbox under Windows and Linux for nonparametric regression estimation based on the statistical library for least squares support vector machines (StatLSSVM). The StatLSSVM toolbox is written so that only a few lines of code are necessary in order to perform standard nonparametric regression, regression with correlated errors and robust regression. In addition, construction of additive models and pointwise or uniform confidence intervals are also supported. A number of tuning criteria such as classical cross-validation, robust cross-validation and cross-validation for correlated errors are available. Also, minimization of the previous criteria is available without any user interaction.
国家哲学社会科学文献中心版权所有