首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
  • 本地全文:下载
  • 作者:Marco Geraci
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2014
  • 卷号:57
  • 期号:1
  • 页码:1-29
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Inference in quantile analysis has received considerable attention in the recent years. Linear quantile mixed models (Geraci and Bottai 2014) represent a flexible statistical tool to analyze data from sampling designs such as multilevel, spatial, panel or longitudinal, which induce some form of clustering. In this paper, I will show how to estimate conditional quantile functions with random effects using the R package lqmm. Modeling, estimation and inference are discussed in detail using a real data example. A thorough description of the optimization algorithms is also provided.
国家哲学社会科学文献中心版权所有