首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Spectral Projected Gradient Methods: Review and Perspectives
  • 本地全文:下载
  • 作者:Ernesto G. Birgin ; Jose Mario Martínez ; Marcos Raydan
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2014
  • 卷号:60
  • 期号:1
  • 页码:1-21
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Over the last two decades, it has been observed that using the gradient vector as a search direction in large-scale optimization may lead to efficient algorithms. The effectiveness relies on choosing the step lengths according to novel ideas that are related to the spectrum of the underlying local Hessian rather than related to the standard decrease in the objective function. A review of these so-called spectral projected gradient methods for convex constrained optimization is presented. To illustrate the performance of these low-cost schemes, an optimization problem on the set of positive definite matrices is described.
国家哲学社会科学文献中心版权所有