首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood
  • 本地全文:下载
  • 作者:Thomas W. Yee ; Jakub Stoklosa ; Richard M. Huggins
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2015
  • 卷号:65
  • 期号:1
  • 页码:1-33
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:It is well known that using individual covariate information (such as body weight or gender) to model heterogeneity in capture-recapture (CR) experiments can greatly enhance inferences on the size of a closed population. Since individual covariates are only observable for captured individuals, complex conditional likelihood methods are usually required and these do not constitute a standard generalized linear model (GLM) family. Modern statistical techniques such as generalized additive models (GAMs), which allow a relaxing of the linearity assumptions on the covariates, are readily available for many standard GLM families. Fortunately, a natural statistical framework for maximizing conditional likelihoods is available in the Vector GLM and Vector GAM classes of models. We present several new R functions (implemented within the VGAM package) specifically developed to allow the incorporation of individual covariates in the analysis of closed population CR data using a GLM/GAM-like approach and the conditional likelihood. As a result, a wide variety of practical tools are now readily available in the VGAM object oriented framework. We discuss and demonstrate their advantages, features and flexibility using the new VGAM CR functions on several examples.
国家哲学社会科学文献中心版权所有