首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:PCovR: An R Package for Principal Covariates Regression
  • 本地全文:下载
  • 作者:Marlies Vervloet ; Henk A. L. Kiers ; Wim Van den Noortgate
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2015
  • 卷号:65
  • 期号:1
  • 页码:1-14
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:In this article, we present PCovR, an R package for performing principal covariates regression (PCovR; De Jong and Kiers 1992). PCovR was developed for analyzing regression data with many and/or highly collinear predictor variables. The method simultaneously reduces the predictor variables to a limited number of components and regresses the criterion variables on these components. The flexibility, interpretational advantages, and computational simplicity of PCovR make the method stand out between many other regression methods. The PCovR package offers data preprocessing options, new model selection procedures, and several component rotation strategies, some of which were not available in R up till now. The use and usefulness of the package is illustrated with a real dataset, called psychiatrists.
国家哲学社会科学文献中心版权所有