首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:%lrasch_mml: A SAS Macro for Marginal Maximum Likelihood Estimation in Longitudinal Polytomous Rasch Models
  • 本地全文:下载
  • 作者:Maja Olsbjerg ; Karl Bang Christensen
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2015
  • 卷号:67
  • 期号:1
  • 页码:1-24
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Item response theory models are often applied when a number items are used to measure a unidimensional latent variable. Originally proposed and used within educational research, they are also used when focus is on physical functioning or psychological wellbeing. Modern applications often need more general models, typically models for multidimensional latent variables or longitudinal models for repeated measurements. This paper describes a SAS macro that fits two-dimensional polytomous Rasch models using a specification of the model that is sufficiently flexible to accommodate longitudinal Rasch models. The macro estimates item parameters using marginal maximum likelihood estimation. A graphical presentation of item characteristic curves is included.
  • 关键词:polytomous Rasch model;longitudinal Rasch model;marginal maximum likelihood (MML) estimation;item parameter drift;response dependence;SAS macro
国家哲学社会科学文献中心版权所有