首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:CovSel: An R Package for Covariate Selection When Estimating Average Causal Effects
  • 本地全文:下载
  • 作者:Jenny Häggström ; Emma Persson ; Ingeborg Waernbaum
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2015
  • 卷号:68
  • 期号:1
  • 页码:1-20
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:We describe the R package CovSel, which reduces the dimension of the covariate vector for the purpose of estimating an average causal effect under the unconfoundedness assumption. Covariate selection algorithms developed in De Luna, Waernbaum, and Richardson (2011) are implemented using model-free backward elimination. We show how to use the package to select minimal sets of covariates. The package can be used with continuous and discrete covariates and the user can choose between marginal co-ordinate hypothesis tests and kernel-based smoothing as model-free dimension reduction techniques.
  • 关键词:causal inference;dimension reduction;dr;np;R
国家哲学社会科学文献中心版权所有