首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
  • 本地全文:下载
  • 作者:Flora Jay ; Olivier François ; Eric Y. Durand
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2015
  • 卷号:68
  • 期号:1
  • 页码:1-19
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:The software POPS performs inference of population genetic structure using multilocus genotypic data. Based on a hierarchical Bayesian framework for latent regression models, POPS implements algorithms that improve estimation of individual admixture proportions and cluster membership probabilities by using geographic and environmental information. In addition, POPS defines ancestry distribution models allowing its users to forecast admixture proportion and cluster membership geographic variation under changing environmental conditions. We illustrate a typical use of POPS using data for an alpine plant species, for which POPS predicts changes in spatial population structure assuming a particular scenario of climate change.
  • 关键词:latent class regression models;mixture models;MCMC;population genetic structure;environmental covariates
国家哲学社会科学文献中心版权所有