首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Computing Graph Distances Parameterized by Treewidth and Diameter
  • 本地全文:下载
  • 作者:Thore Husfeldt
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:63
  • 页码:16:1-16:11
  • DOI:10.4230/LIPIcs.IPEC.2016.16
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that the eccentricity of every vertex in an undirected graph on n vertices can be computed in time n exp O(k*log(d)), where k is the treewidth of the graph and d is the diameter. This means that the diameter and the radius of the graph can be computed in the same time. In particular, if the diameter is constant, it can be determined in time n*exp(O(k)). This result matches a recent hardness result by Abboud, Vassilevska Williams, and Wang [SODA 2016] that shows that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [J. Comp. Syst. Sc., 2001], for any epsilon > 0, no algorithm with running time n^{2-epsilon}*exp(o(k)) can distinguish between graphs with diameter 2 and 3.
  • 关键词:Graph algorithms; diameter; treewidth; Strong Exponential Time Hypothesis
国家哲学社会科学文献中心版权所有