摘要:We determine the complexity of all constraint satisfaction problems over partial orders, in particular we show that every such problem is NP-complete or can be solved in polynomial time. This result generalises the complexity dichotomy for temporal constraint satisfaction problems by Bodirsky and Kára. We apply the so called universal-algebraic approach together with tools from model theory and Ramsey theory to prove our result. In the course of this analysis we also establish a structural dichotomy regarding the model theoretic properties of the reducts of the random partial order.
关键词:Constraint Satisfaction; Random Partial Order; Computational Complexity; Universal Algebra; Ramsey Theory