首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates
  • 本地全文:下载
  • 作者:Alexander S. Kulikov ; Vladimir V. Podolskii
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:66
  • 页码:49:1-49:14
  • DOI:10.4230/LIPIcs.STACS.2017.49
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the following computational problem: for which values of k, the majority of n bits MAJ_n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ_k o MAJ_k. We observe that the minimum value of k for which there exists a MAJ_k o MAJ_k circuit that has high correlation with the majority of n bits is equal to Theta(sqrt(n)). We then show that for a randomized MAJ_k o MAJ_k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n^(2/3+o(1)). We show a worst case lower bound: if a MAJ_k o MAJ_k circuit computes the majority of n bits correctly on all inputs, then k <= n^(13/19+o(1)). This lower bound exceeds the optimal value for randomized circuits and thus is unreachable for pure randomized techniques. For depth 3 circuits we show that a circuit with k= O(n^(2/3)) can compute MAJ_n correctly on all inputs.
  • 关键词:circuit complexity; computational complexity; threshold; majority; lower bound; upper bound
国家哲学社会科学文献中心版权所有