首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Improved Distance Queries and Cycle Counting by Frobenius Normal Form
  • 本地全文:下载
  • 作者:Piotr Sankowski ; Karol Wegrzycki
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:66
  • 页码:56:1-56:14
  • DOI:10.4230/LIPIcs.STACS.2017.56
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Consider an unweighted, directed graph G with the diameter D. In this paper, we introduce the framework for counting cycles and walks of given length in matrix multiplication time O-tilde(n^omega). The framework is based on the fast decomposition into Frobenius normal form and the Hankel matrix-vector multiplication. It allows us to solve the following problems efficiently. * All Nodes Shortest Cycles - for every node return the length of the shortest cycle containing it. We give an O-tilde(n^omega) algorithm that improves the previous O-tilde(n^((omega + 3)/2)) algorithm for unweighted digraphs. * We show how to compute all D sets of vertices lying on cycles of length c in {1, ..., D} in randomized time O-tilde(n^omega). It improves upon an algorithm by Cygan where algorithm that computes a single set is presented. * We present a functional improvement of distance queries for directed, unweighted graphs. * All Pairs All Walks - we show almost optimal O-tilde(n^3) time algorithm for all walks counting problem. We improve upon the naive O(D n^omega) time algorithm.
  • 关键词:Frobenius Normal Form; Graph Algorithms; All Nodes Shortest Cycles
国家哲学社会科学文献中心版权所有