首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Top-k Querying of Unknown Values under Order Constraints
  • 本地全文:下载
  • 作者:Antoine Amarilli ; Yael Amsterdamer ; Tova Milo
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:68
  • 页码:5:1-5:18
  • DOI:10.4230/LIPIcs.ICDT.2017.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Many practical scenarios make it necessary to evaluate top-k queries over data items with partially unknown values. This paper considers a setting where the values are taken from a numerical domain, and where some partial order constraints are given over known and unknown values: under these constraints, we assume that all possible worlds are equally likely. Our work is the first to propose a principled scheme to derive the value distributions and expected values of unknown items in this setting, with the goal of computing estimated top-k results by interpolating the unknown values from the known ones. We study the complexity of this general task, and show tight complexity bounds, proving that the problem is intractable, but can be tractably approximated. We then consider the case of tree-shaped partial orders, where we show a constructive PTIME solution. We also compare our problem setting to other top-k definitions on uncertain data.
  • 关键词:uncertainty; partial order; unknown values; crowdsourcing; interpolation
国家哲学社会科学文献中心版权所有