首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America
  • 本地全文:下载
  • 作者:Jordan L. Schnell ; Michael J. Prather
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:11
  • 页码:2854-2859
  • DOI:10.1073/pnas.1614453114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Heat waves and air pollution episodes pose a serious threat to human health and may worsen under future climate change. In this paper, we use 15 years (1999–2013) of commensurately gridded (1° x 1°) surface observations of extended summer (April–September) surface ozone (O3), fine particulate matter (PM2.5), and maximum temperature (TX) over the eastern United States and Canada to construct a climatology of the coincidence, overlap, and lag in space and time of their extremes. Extremes of each quantity are defined climatologically at each grid cell as the 50 d with the highest values in three 5-y windows (∼95th percentile). Any two extremes occur on the same day in the same grid cell more than 50% of the time in the northeastern United States, but on a domain average, co-occurrence is approximately 30%. Although not exactly co-occurring, many of these extremes show connectedness with consistent offsets in space and in time, which often defy traditional mechanistic explanations. All three extremes occur primarily in large-scale, multiday, spatially connected episodes with scales of >1,000 km and clearly coincide with large-scale meteorological features. The largest, longest-lived episodes have the highest incidence of co-occurrence and contain extreme values well above their local 95th percentile threshold, by +7 ppb for O3, +6 µg m−3 for PM2.5, and +1.7 °C for TX. Our results demonstrate the need to evaluate these extremes as synergistic costressors to accurately quantify their impacts on human health.
  • 关键词:extremes ; ozone ; particulate matter ; heat waves
国家哲学社会科学文献中心版权所有