期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:12
页码:3222-3227
DOI:10.1073/pnas.1619385114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Criminal convictions require proof that a prohibited act was performed in a statutorily specified mental state. Different legal consequences, including greater punishments, are mandated for those who act in a state of knowledge, compared with a state of recklessness. Existing research, however, suggests people have trouble classifying defendants as knowing, rather than reckless, even when instructed on the relevant legal criteria. We used a machine-learning technique on brain imaging data to predict, with high accuracy, which mental state our participants were in. This predictive ability depended on both the magnitude of the risks and the amount of information about those risks possessed by the participants. Our results provide neural evidence of a detectable difference in the mental state of knowledge in contrast to recklessness and suggest, as a proof of principle, the possibility of inferring from brain data in which legally relevant category a person belongs. Some potential legal implications of this result are discussed.
关键词:neurolaw ; mental states ; knowledge ; recklessness ; elastic-net model