期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:13
页码:3358-3363
DOI:10.1073/pnas.1612608114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Understanding and controlling the flow of water confined in nanopores has tremendous implications in theoretical studies and industrial applications. Here, we propose a simple model for the confined water flow based on the concept of effective slip, which is a linear sum of true slip, depending on a contact angle, and apparent slip, caused by a spatial variation of the confined water viscosity as a function of wettability as well as the nanopore dimension. Results from this model show that the flow capacity of confined water is 10−1∼107 times that calculated by the no-slip Hagen–Poiseuille equation for nanopores with various contact angles and dimensions, in agreement with the majority of 53 different study cases from the literature. This work further sheds light on a controversy over an increase or decrease in flow capacity from molecular dynamics simulations and experiments.