首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
  • 本地全文:下载
  • 作者:Alexandra N. Kravchenko ; Sieglinde S. Snapp ; G. Philip Robertson
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:5
  • 页码:926-931
  • DOI:10.1073/pnas.1612311114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
  • 关键词:field experiments ; scaling ; corn soybean wheat rotation ; weed control ; organic agriculture
国家哲学社会科学文献中心版权所有