首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance
  • 本地全文:下载
  • 作者:William Bracamonte-Baran ; Jonathan Florentin ; Ying Zhou
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:5
  • 页码:1099-1104
  • DOI:10.1073/pnas.1618364114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Maternal microchimerism (MMc) has been associated with development of allospecific transplant tolerance, antitumor immunity, and cross-generational reproductive fitness, but its mode of action is unknown. We found in a murine model that MMc caused exposure to the noninherited maternal antigens in all offspring, but in some, MMc magnitude was enough to cause membrane alloantigen acquisition (mAAQ; “cross-dressing”) of host dendritic cells (DCs). Extracellular vesicle (EV)-enriched serum fractions from mAAQ+, but not from non-mAAQ, mice reproduced the DC cross-dressing phenomenon in vitro. In vivo, mAAQ was associated with increased expression of immune modulators PD-L1 (programmed death-ligand 1) and CD86 by myeloid DCs (mDCs) and decreased presentation of allopeptide+self-MHC complexes, along with increased PD-L1, on plasmacytoid DCs (pDCs). Remarkably, both serum EV-enriched fractions and membrane microdomains containing the acquired MHC alloantigens included CD86, but completely excluded PD-L1. In contrast, EV-enriched fractions and microdomains containing allopeptide+self-MHC did not exclude PD-L1. Adoptive transfer of allospecific transgenic CD4 T cells revealed a “split tolerance” status in mAAQ+ mice: T cells recognizing intact acquired MHC alloantigens proliferated, whereas those responding to allopeptide+self-MHC did not. Using isolated pDCs and mDCs for in vitro culture with allopeptide+self-MHC–specific CD4 T cells, we could replicate their normal activation in non-mAAQ mice, and PD-L1–dependent anergy in mAAQ+ hosts. We propose that EVs provide a physiologic link between microchimerism and split tolerance, with implications for tumor immunity, transplantation, autoimmunity, and reproductive success.
  • 关键词:dendritic cells ; exosomes ; split tolerance ; T cells ; microchimerism
国家哲学社会科学文献中心版权所有