首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Siberian Arctic black carbon sources constrained by model and observation
  • 本地全文:下载
  • 作者:Patrik Winiger ; August Andersson ; Sabine Eckhardt
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:7
  • 页码:E1054-E1061
  • DOI:10.1073/pnas.1613401114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m−3 to 302 ng⋅m−3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.
  • 关键词:Arctic haze ; atmospheric transport modeling ; emission inventory ; carbon isotopes ; climate change
国家哲学社会科学文献中心版权所有