期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:9
页码:2419-2424
DOI:10.1073/pnas.1615676114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1 , and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G2/M cell-cycle marker gene, CYCB1;1 . TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.