首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Parametric Kalman filter for chemical transport models
  • 本地全文:下载
  • 作者:Olivier Pannekoucke ; Sophie Ricci ; Sebastien Barthelemy
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2016
  • 卷号:68
  • 期号:1
  • DOI:10.3402/tellusa.v68.31547
  • 摘要:Abstract A computational simplification of the Kalman filter (KF) is introduced – the parametric Kalman filter (PKF). The full covariance matrix dynamics of the KF, which describes the evolution along the analysis and forecast cycle, is replaced by the dynamics of the error variance and the diffusion tensor, which is related to the correlation length-scales. The PKF developed here has been applied to the simplified framework of advection–diffusion of a passive tracer, for its use in chemical transport model assimilation. The PKF is easy to compute and computationally cost-effective than an ensemble Kalman filter (EnKF) in this context. The validation of the method is presented for a simplified 1-D advection–diffusion dynamics.
  • 关键词:data assimilation ; Kalman filter ; covariance dynamics ; parameterisation of analysis
国家哲学社会科学文献中心版权所有