首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Adaptive Learning Rate Elitism Estimation of Distribution Algorithm Combining Chaos Perturbation for Large Scale Optimization
  • 本地全文:下载
  • 作者:Qingyang Xu ; Chengjin Zhang ; Jie Sun
  • 期刊名称:The Open Cybernetics & Systemics Journal
  • 电子版ISSN:1874-110X
  • 出版年度:2016
  • 卷号:10
  • 期号:1
  • 页码:20-40
  • DOI:10.2174/1874110X01610010020
  • 出版社:Bentham Science Publishers Ltd
  • 摘要:Estimation of distribution algorithm (EDA) is a kind of EAs, which is based on the technique of probabilistic model and sampling. Large scale optimization problems are a challenge for the conventional EAs. This paper presents an adaptive learning rate elitism EDA combining chaos perturbation (ALREEDA) to improve the performance of traditional EDA to solve high dimensional optimization problems. The famous elitism strategy is introduced to maintain a good convergent performance of this algorithm. The learning rate of σ (a parameter of probabilistic model) is adaptive in the optimization to enhance the algorithm’s global and local search ability, and the chaos perturbation strategy is used to improve the algorithm’s local search ability. Some simulation experiments are conducted to verify the performance of ALREEDA by seven benchmarks of CEC’08 large scale optimization with dimensions 100, 500 and 1000. The results of ALREEDA are promising on majority of the testing problems, and it is comparable with other EDAs and some other improved EAs.
  • 关键词:Adaptive learning rate; Chaos perturbation; Elitism; Estimation of distribution algorithm; Gaussian distribution.
国家哲学社会科学文献中心版权所有