首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Block Compressive Sensing Algorithm Based on Interleaving Extraction in Contourlet Domain
  • 本地全文:下载
  • 作者:Hongbo Bi ; Ying Liu ; Mengmeng Wu
  • 期刊名称:The Open Cybernetics & Systemics Journal
  • 电子版ISSN:1874-110X
  • 出版年度:2016
  • 卷号:10
  • 期号:1
  • 页码:218-227
  • DOI:10.2174/1874110X01610010218
  • 出版社:Bentham Science Publishers Ltd
  • 摘要:We propose a block image compressive sensing algorithm based on interleaving extraction in Contourlet domain to improve the performance of image sparse representation and quality of reconstructed images. First, we propose the interleaving extraction scheme and partition an image into several sub-images using interleaving extraction. Second, we represent the sub-images in Contourlet domain and measure Contourlet sub-band coefficient matrices using different dimensional Gaussian random matrices. Finally, we rebuild the sub-band coefficients with the orthogonal matching pursuit algorithm and conduct Contourlet inverse transform to reconstruct the original images. Experimental results show that the subjective visual effect and peak signal to noise ratio of the proposed algorithm are superior to those of the original compressive sensing algorithms under the same sampling rate.
  • 关键词:Compressive sensing; Contourlet transform; Image reconstruction; Interleaving extraction; Sparse representation.
国家哲学社会科学文献中心版权所有