期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2017
卷号:8
期号:3
DOI:10.14569/IJACSA.2017.080364
出版社:Science and Information Society (SAI)
摘要:Puzzles and board games represent several important classes of AI problems, but also represent difficult complexity classes. In this paper, we propose a deep learning based alternative to train a neural network model to find solution states of the popular puzzle game Sokoban. The network trains against a classical solver that uses theorem proving as the oracle of valid and invalid games states, in a setup that is similar to the popular adversarial training framework. Using our approach, we have been able to verify the validity of a Sokoban puzzle up to an accuracy of 99% on the test set. We have also been able to train our network to generate the next possible state of the puzzle board up to an accuracy of 99% on the validation set. We hope that through this approach, a trained neural network will be able to replace human experts and classical rule-based AI in generating new instances and solutions for such games.