首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:Metabolic behavior of hepatic VLDL and plasma LDL apoB-100 in African green monkeys.
  • 本地全文:下载
  • 作者:C A Marzetta ; F L Johnson ; L A Zech
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1989
  • 卷号:30
  • 期号:3
  • 页码:357-370
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Recently, evidence has accumulated suggesting that significant amounts of plasma low density lipoproteins (LDL) may be derived by direct production. These plasma very low density lipoprotein (VLDL)-independent sources include the production and secretion of LDL-like particles directly by the liver, and/or a small pool of nascent precursor particles that are converted rapidly to LDL. The current studies were designed to test the hypothesis that hepatic VLDL represent a rapidly turning over precursor pool to plasma LDL in African green monkeys. Livers from African green monkeys were perfused with serum-free medium containing [3H]leucine or 3H-labeled amino acids for 4-6 hr. Hepatic [3H]VLDL and autologous plasma 125I-labeled LDL were injected simultaneously into recipient animals and density gradient ultracentrifugation and gel filtration were used to characterize the distribution of 3H and 125I radioactivity at selected times after injection. These studies show that 4 to 66% of the injected dose of hepatic VLDL [3H]apoB-100 was metabolized extremely rapidly into particles that resembled the recipient's plasma LDL by size and density. Based on the kinetic model developed to describe the metabolic behavior of hepatic VLDL [3H]apoB-100, the estimated maximal pool size of hepatic VLDL apoB-100 in these animals was very small (0.042 and 0.112 mg) and represented, at best, approximately 10% of the average plasma VLDL apoB-100 mass found in cholesterol-fed African green monkeys. In addition, the radiolabeled hepatic LDL appear to be metabolized similarly to plasma LDL. That is, the rapid conversion of hepatic VLDL as well as the direct production of hepatic particles within the LDL density range appear to contribute to plasma LDL. Metabolic heterogeneity was also seen within the LDL class. The more buoyant subfraction (LDL1) had a higher turnover rate than the more dense subfraction (LDL2) and hepatic VLDL-derived [3H]LDL1 had a slower final rate of plasma disappearance than the plasma-derived 125I-labeled LDL1 in most animals. The results from these studies suggest that a small pool of hepatic VLDL can be converted very rapidly to plasma LDL and may contribute significantly to the large plasma pool of LDL seen in cholesterol-fed African green monkeys. This pathway may be analogous to the pathway in some human subjects in which a portion of human plasma VLDL is converted rapidly into LDL without passing through a delipidation cascade, often referred to as direct LDL production.
国家哲学社会科学文献中心版权所有