首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Regulation of cholesterol metabolism in the ethionine-induced premalignant rat liver.
  • 本地全文:下载
  • 作者:S K Erickson ; S R Lear ; M E Barker
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1990
  • 卷号:31
  • 期号:5
  • 页码:933-945
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:The early premalignant liver provides a model in which to study metabolic alterations that may be permissive for the development of full malignancy. Although there are biochemical changes in this model, there are no detectable morphological ones when compared with a normal, fully differentiated liver. The maintenance of cholesterol homeostasis, essential for proper functioning of mammalian cells, is known to be altered in malignancy. We used the ethionine-induced premalignant liver model to study the effects of the premalignant state on cellular parameters involved in the maintenance of hepatic cholesterol homeostasis. Cholesterol synthesis was elevated about twofold in the livers of rats treated with ethionine as was the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, its rate limiting enzyme. There was no change in reductase activation state. Acyl coenzyme A:cholesterol acyl-transferase (ACAT) was decreased about 30%, and cholesterol 7 alpha-hydroxylase, about 50%. There was no significant change in neutral cholesteryl ester hydrolase activity, but acid hydrolase activity was decreased. There was little change in low density lipoprotein receptor protein as determined by immunoblotting. Biliary lipid secretion was in the normal range when expressed per gram liver; however, bile flow was doubled. The ethionine-fed animals were mildly hypocholesterolemic and had an altered serum lipoprotein pattern. Cholesterol synthesis and HMG-CoA reductase activity exhibited decreased sensitivities to inhibition by dietary cholesterol when compared to control livers. However, sensitivity to intragastrically administered mevalonolactone was not altered. Although ACAT activity was increased by mevalonolactone administration to levels similar to those in untreated animals, it was not increased in the ethionine-fed animals by feeding cholesterol. The ethionine-induced premalignant liver responded to ethinyl estradiol treatment in a manner similar to that of the control, i.e., profound hypolipidemia, increased low density lipoprotein receptors, decreased reductase activity, and increased cholesterol esterification. Thus, these livers retained their estrogen responsiveness. Taken together, the data demonstrate that the major elements involved in maintaining hepatic cholesterol homeostasis are present in the premalignant liver, although in some cases at levels that are different from the control. However, the susceptibility to regulation was altered in these livers to suggest markedly decreased availability of cholesterol of exogenous origin to the regulatory compartment(s). Further, coupling of the different elements involved in maintenance of hepatic cholesterol homeostasis appeared to have been changed.
国家哲学社会科学文献中心版权所有