出版社:American Society for Biochemistry and Molecular Biology
摘要:Macrophages and arterial chondroitin sulfate proteoglycans (CSPG) are probably associated with extracellular and intracellular lipoprotein deposition during atherogenesis. We found that human arterial CSPG can be used to select subclasses from low density lipoprotein (LDL) with different structural properties and capacities to interact with human monocyte-derived macrophages (HMDM). Four subclasses, LDL(PG)1 to LDL(PG)4, in order of decreasing CSPG-complexing capacity, were prepared and characterized in terms of their ability to interact with HMDM. The LDL subclasses with highest avidity for CSPG, LDL(PG)1 and LDL(PG)2, were bound, internalized, and degraded more efficiently than those of lower avidity for CSPG. From LDL(PG)1 to LDL(PG)4, the gradual decrease in uptake by HMDM and decreasing avidity for CSPG were associated with a gradual decrease in isoelectric point (from 5.93 to 5.68) and an augmented ratio of surface polar lipid to core nonpolar components (from 0.35 to 0.54). Competition experiments indicated that the proteoglycan-selected subfractions shared the binding sites and uptake mechanisms of native LDL. The results suggest the existence of a structurally related gradation in the avidity of LDL subpopulations for cells and matrix components. The presence within LDL subpopulations of a differential capacity to interact with intimal extracellular and cellular elements could be associated with a similar heterogeneity in their atherogenic potential.