首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Metabolism of apoB-100-containing lipoproteins in familial hyperchylomicronemia.
  • 本地全文:下载
  • 作者:T Demant ; A Gaw ; G F Watts
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1993
  • 卷号:34
  • 期号:1
  • 页码:147-156
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:The metabolism of apolipoprotein B-100 was studied in three patients with familial hyperchylomicronemia (type I hyperlipoproteinemia) using a very low density lipoprotein (VLDL) dual-tracer technique. Radioiodinated VLDL1 (Sf 60-400) and VLDL2 (Sf 20-60) were injected and their catabolism and rate of the transfer of apoB into VLDL2, intermediate density lipoprotein (IDL) (Sf 12-20), and low density lipoprotein (LDL) (Sf 0-12) were compared in patients and in five normolipidemic controls. The rates of delipidation of large triglyceride-rich VLDL1 to VLDL2 (0.26-0.54 pools/day vs. 2.5-5.2 pools/day in controls) and VLDL1 direct catabolism (0.33-0.92 pools/day vs. 4.2-14.7 pools/day in controls) were found to be significantly reduced in type I patients resulting in a tenfold increase of VLDL1 pool size. ApoB synthesis into this density interval was, however, normal as was that into smaller VLDL2. the circulating apoB mass in VLDL2 was not increased. In fact, apart from a modest decrease in the rate of VLDL2 delipidation to IDL and LDL, the behavior of apoB in this density interval was similar in hyperchylomicronemic and normal subjects. Likewise, the transfer of apoB through the IDL and LDL density ranges was not significantly different from normal. Pool sizes of these fractions, however, were reduced, the latter significantly (354-491 mg vs. 1,160-2,505 mg in controls) due to increased direct catabolism in hyperchylomicronemic patients. The results of this study indicate that lipoprotein lipase deficiency primarily affects VLDL1 metabolism, both its delipidation and direct removal from plasma. Lipolysis further down the delipidation cascade is not dependent on this enzyme. Hypercatabolism rather than a failure of synthesis of IDL and LDL was responsible for the decreased pools for both lipoproteins.
国家哲学社会科学文献中心版权所有