首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Effects of side chain length on ionization behavior and transbilayer transport of unconjugated dihydroxy bile acids: a comparison of nor-chenodeoxycholic acid and chenodeoxycholic acid.
  • 本地全文:下载
  • 作者:J Ko ; J A Hamilton ; H T Ton-Nu
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1994
  • 卷号:35
  • 期号:5
  • 页码:883-892
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:13C-NMR spectroscopy was used to examine the effect of side chain length on the ionization properties and transmembrane transport rate of 3 alpha,7 alpha-dihydroxy bile acids. When solubilized in taurocholate micelles, [23-13C]nor-chenodeoxycholic acid (nor-CDCA) had a pKa of 6.1, similar to that of CDCA (pKa 6.2), its C24 homologue. In unilamellar phosphatidylcholine vesicles, the pKa of nor-CDCA was 7.0, whereas that of CDCA was 6.6. Lineshape analysis indicated that the rate of ionization of nor-CDCA as a micellar solute or as a vesicle component was very slow (0.4 x 10(5) sec-1) compared to that of acetic acid in water (8.7 x 10(5) sec-1). Lineshape analysis of spectra of the protonated form of nor-CDCA at acidic bulk pH indicated that the transbilayer transport rate of nor-CDCA (580 sec-1) was six times faster than that of CDCA (100 sec-1). It is proposed that the shorter side chain of the nor-CDCA molecule causes it to reside more deeply inside the vesicle bilayer than CDCA, explaining its weaker ionization and more rapid flip-flop rate. These in vitro experiments imply that, in vivo, a given C23 nor-dihydroxy bile acid will ionize less readily when present in membranes, and it will also flip-flop faster than its C24 homologue.
国家哲学社会科学文献中心版权所有