首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner.
  • 本地全文:下载
  • 作者:M E Brousseau ; S Santamarina-Fojo ; B L Vaisman
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1997
  • 卷号:38
  • 期号:12
  • 页码:2537-2547
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Lecithin:cholesterol acyltransferase (LCAT) is an enzyme well known for its involvement in the intravascular metabolism of high density lipoproteins; however, its role in the regulation of apolipoprotein (apo) B-containing lipoproteins remains elusive. The present study was designed to investigate the metabolic mechanisms responsible for the differential lipoprotein response observed between cholesterol-fed hLCAT transgenic and control rabbits. 131I-labeled HDL apoA-I and 125I-labeled LDL kinetics were assessed in age- and sex-matched groups of rabbits with high (HE), low (LE), or no hLCAT expression after 6 weeks on a 0.3% cholesterol diet. In HE, the mean total cholesterol concentration on this diet, mg/dl (230 +/- 50), was not significantly different from that of either LE (313 +/- 46) or controls (332 +/- 52) due to the elevated level of HDL-C observed in HE (127 +/- 19), as compared with both LE (100 +/- 33) and controls (31 +/- 4). In contrast, the mean nonHDL-C concentration for HE (103 +/- 33) was much lower than that for either LE (213 +/- 39) or controls (301 +/- 55). FPLC analysis of plasma confirmed that HDL was the predominant lipoprotein class in HE on the cholesterol diet, whereas cholesteryl ester-rich, apoB-containing lipoproteins characterized the plasma of LE and, most notably, of controls. In vivo kinetic experiments demonstrated that the differences in HDL levels noted between the three groups were attributable to distinctive rates of apoA-I catabolism, with the mean fractional catabolic rate (FCR, d-1) of apoA-I slowest in HE (0.282 +/- 0.03), followed by LE (0.340 +/- 0.01) and controls (0.496 +/- 0.04). A similar, but opposite, pattern was observed for nonHDL-C levels and LDL metabolism (h-1), such that HE had the lowest nonHDL-C levels with the fastest rate of clearance (0.131 +/- 0.027), followed by LE (0.057 +/- 0.009) and controls (0.031 +/- 0.001). Strong correlations were noted between LCAT activity and both apoA-I (r= -0.868, P
国家哲学社会科学文献中心版权所有