首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice
  • 本地全文:下载
  • 作者:David Q-H. Wang ; Beverly Paigen ; Martin C. Carey
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2001
  • 卷号:42
  • 期号:11
  • 页码:1820-1830
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Interindividual and interstrain variations in cholesterol absorption efficiency occur in humans and animals. We investigated physiological biliary and small intestinal factors that might determine variations in cholesterol absorption efficiency among inbred mouse strains. We found that there were significant differences in cholesterol absorption efficiency measured by plasma, fecal, and lymphatic methods: 1 mice, the cholesterol absorption efficiency (31 ± 6%) mimicked that of the C57L parent (37 ± 5%) and was significantly higher than in AKR mice (24 ± 4%). Although biliary bile salt compositions and small intestinal transit times were similar, C57L mice displayed significantly greater bile salt secretion rates and pool sizes than AKR mice. In examining lymphatic cholesterol transport in the setting of a chronic biliary fistula, C57L mice displayed significantly higher cholesterol absorption rates compared with AKR mice. Because biliary and intestinal transit factors were accounted for, we conclude that genetic variations at the enterocyte level determine differences in murine cholesterol absorption efficiency, with high cholesterol absorption likely to be a dominant trait. This study provides baseline information for identifying candidate genes that regulate intestinal cholesterol absorption at the cellular level. —Wang, D. Q-H., B. Paigen, and M. C. Carey. Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J. Lipid Res. 2001. 42: 1820–1830.
  • 关键词:bile flow ; bile salt ; chylomicron ; lymph ; micelle ; nutrition ; phospholipid ; sitostanol
国家哲学社会科学文献中心版权所有