首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Carotenoid uptake and secretion by CaCo-2 cells β-carotene isomer selectivity and carotenoid interactions
  • 本地全文:下载
  • 作者:Alexandrine During ; M. Mahmood Hussain ; Diane W. Morel
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2002
  • 卷号:43
  • 期号:7
  • 页码:1086-1095
  • DOI:10.1194/jlr.M200068-JLR200
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:In presence of oleate and taurocholate, differentiated CaCo-2 cell monolayers on membranes were able to assemble and secrete chylomicrons. Under these conditions, both cellular uptake and secretion into chylomicrons of β-carotene (β-C) were curvilinear, time-dependent (2–16 h), saturable, and concentration-dependent (apparent K m of 7–10 μM) processes. Under linear concentration conditions at 16 h incubation, the extent of absorption of all- trans β-C was 11% (80% in chylomicrons), while those of 9- cis- and 13- cis- β-C were significantly lower (2–3%). The preferential uptake of the all- trans isomer was also shown in hepatic stellate HSC-T6 cells and in a cell-free system from rat liver (microsomes), but not in endothelial EAHY cells or U937 monocyte-macrophages. Moreover, extents of absorption of α-carotene (α-C), lutein (LUT), and lycopene (LYC) in CaCo-2 cells were 10%, 7%, and 2.5%, respectively. Marked carotenoid interactions were observed between LYC/β-C and β-C/α-C. The present results indicate that β-C conformation plays a major role in its intestinal absorption and that cis isomer discrimination is at the levels of cellular uptake and incorporation into chylomicrons. Moreover, the kinetics of cellular uptake and secretion of β-C, the inhibition of the intestinal absorption of one carotenoid by another, and the cellular specificity of isomer discrimination all suggest that carotenoid uptake by intestinal cells is a facilitated process.
国家哲学社会科学文献中心版权所有