首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Low-temperature effect on the sterol-dependent processing of SREBPs and transcription of related genes in HepG2 cells
  • 本地全文:下载
  • 作者:Ishaiahu Shechter ; Peihua Dai ; Mark A. Roseman
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2003
  • 卷号:44
  • 期号:8
  • 页码:1581-1590
  • DOI:10.1194/jlr.M300105-JLR200
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Lowering the growth temperature of HepG2 cells from 37°C to 20°C results in a 73% reduction in human squalene synthase (HSS) protein, a 76% reduction in HSS mRNA, and a 96% reduction in promoter activity of a secreted alkaline phosphatase-HSS reporter gene. A similar decrease in either mRNA or protein levels is observed for 3-hydroxy-3-methylglutaryl CoA reductase, farnesyl diphosphate synthase, the LDL receptor, and fatty acid synthase. All these proteins and mRNAs show either a decrease or a complete loss of sterol-dependent regulation in cells grown at 20°C. In contrast, sterol regulatory element binding proteins (SREBPs)-1 and -2 exhibit a 2- to 3-fold increase in mRNA levels at 20°C. The membrane-bound form of the SREBPs is dramatically increased, but the proteolytic processing to the nuclear (N-SREBP) form is inhibited under these conditions. Overexpression of the N-SREBP or SREBP cleavage-activating protein (SCAP), but not site-1 or site-2 proteases, restores the activation of the HSS promoter at 20°C, most likely by liberating the SCAP-SREBP complex so that it can move to the Golgi for processing. These results indicate that the cholesterol synthesizing machinery is down-regulated at low temperatures, and points to the transport of the SCAP-SREBP complex to the Golgi as the specific down-regulated step.
国家哲学社会科学文献中心版权所有