首页    期刊浏览 2025年06月22日 星期日
登录注册

文章基本信息

  • 标题:Ion-trap tandem mass spectrometric analysis of Amadori-glycated phosphatidylethanolamine in human plasma with or without diabetes
  • 作者:Kiyotaka Nakagawa ; Jeong-Ho Oak ; Ohki Higuchi
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2005
  • 卷号:46
  • 期号:11
  • 页码:2514-2524
  • DOI:10.1194/jlr.D500025-JLR200
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Peroxidized phospholipid-mediated cytotoxicity is involved in the pathophysiology of diseases [i.e., an abnormal increase of phosphatidylcholine hydroperoxide (PCOOH) in plasma of type 2 diabetic patients]. The PCOOH accumulation may relate to Amadori-glycated phosphatidylethanolamine (Amadori-PE; deoxy- d -fructosyl phosphatidylethanolamine), because Amadori-PE causes oxidative stress. However, the occurrence of lipid glycation products, including Amadori-PE, in vivo is still unclear. Consequently, we developed an analysis method of Amadori-PE using a quadrupole/linear ion-trap mass spectrometer, the Applied Biosystems QTRAP. In positive ion mode, collision-induced dissociation of Amadori-PE produced a well-characterized diglyceride ion ([M+H−303]+) permitting neutral loss scanning and multiple reaction monitoring (MRM). When lipid extract from diabetic plasma was infused directly into the QTRAP, Amadori-PE molecular species could be screened out by neutral loss scanning. Interfacing liquid chromatography with QTRAP mass spectrometry enabled the separation and determination of predominant plasma Amadori-PE species with sensitivity of ∼0.1 pmol/injection in MRM. The plasma Amadori-PE level was 0.08 mol% of total PE in healthy subjects and 0.15–0.29 mol% in diabetic patients. Furthermore, plasma Amadori-PE levels were positively correlated with PCOOH (a maker for oxidative stress). These results show the involvement between lipid glycation and lipid peroxidation in diabetes pathogenesis.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有