首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice
  • 本地全文:下载
  • 作者:Barbara P. Atshaves ; Avery L. McIntosh ; Gregory G. Martin
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2009
  • 卷号:50
  • 期号:7
  • 页码:1429-1447
  • DOI:10.1194/jlr.M900020-JLR200
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet altered food consumption, increased weight gain, hepatic lipid, and bile acid accumulation were observed in wild-type mice fed the cholesterol-rich diet. SCP-2 overexpression further exacerbated hepatic lipid accumulation in cholesterol-fed females (cholesterol/cholesteryl esters) and males (cholesterol/cholesteryl esters and triacyglycerol). Primarily in female mice, hepatic cholesterol accumulation induced by SCP-2 overexpression was associated with increased levels of LDL-receptor, HDL-receptor scavenger receptor-B1 (SR-B1) (as well as PDZK1 and/or membrane-associated protein 17 kDa), SCP-2, liver fatty acid binding protein (L-FABP), and 3α-hydroxysteroid dehydrogenase, without alteration of other proteins involved in cholesterol uptake (caveolin), esterification (ACAT2), efflux (ATP binding cassette A-1 receptor, ABCG5/8, and apolipoprotein A1), or oxidation/transport of bile salts (cholesterol 7α-hydroxylase, sterol 27α-hydroxylase, Na+/taurocholate cotransporter, Oatp1a1, and Oatp1a4). The effects of SCP-2 overexpression and cholesterol-rich diet was downregulation of proteins involved in cholesterol transport (L-FABP and SR-B1), cholesterol synthesis (related to sterol regulatory element binding protein 2 and HMG-CoA reductase), and bile acid oxidation/transport (via Oapt1a1, Oatp1a4, and SCP-x). Levels of serum and hepatic bile acids were decreased in cholesterol-fed SCP-2 overexpression mice, especially in females, while the total bile acid pool was minimally affected. Taken together, these findings support an important role for SCP-2 in hepatic cholesterol homeostasis.
国家哲学社会科学文献中心版权所有