首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Severe hepatocellular disease in mice lacking one or both CaaX prenyltransferases
  • 本地全文:下载
  • 作者:Shao H. Yang ; Sandy Y. Chang ; Yiping Tu
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2012
  • 卷号:53
  • 期号:1
  • 页码:77-86
  • DOI:10.1194/jlr.M021220
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase-I (GGTase-I) add 15- or 20-carbon lipids, respectively, to proteins that terminate with a CaaX motif. These posttranslational modifications of proteins with lipids promote protein interactions with membrane surfaces in cells, but the in vivo importance of the CaaX prenyltransferases and the protein lipidation reactions they catalyze remain incompletely defined. One study concluded that a deficiency of FTase was inconsequential in adult mice and led to little or no tissue pathology. To assess the physiologic importance of the CaaX prenyltransferases, we used conditional knockout alleles and an albumin– Cre transgene to produce mice lacking FTase, GGTase-I, or both enzymes in hepatocytes. The hepatocyte-specific FTase knockout mice survived but exhibited hepatocellular disease and elevated transaminases. Mice lacking GGTase-I not only had elevated transaminases but also had dilated bile cannaliculi, hyperbilirubinemia, hepatosplenomegaly, and reduced survival. Of note, GGTase-I–deficient hepatocytes had a rounded shape and markedly reduced numbers of actin stress fibers. Hepatocyte-specific FTase/GGTase-I double-knockout mice closely resembled mice lacking GGTase-I alone, but the disease was slightly more severe. Our studies refute the notion that FTase is dispensable and demonstrate that GGTase-I is crucial for the vitality of hepatocytes.
  • 关键词:protein farnesyltransferase ; protein geranylgeranyltransferase ; hyperbilirubinemia ; hepatic steatosis ; prelamin A ; actin stress fibers
国家哲学社会科学文献中心版权所有