首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins
  • 本地全文:下载
  • 作者:Jihyoun Seong ; Yetao Wang ; Taroh Kinoshita
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2013
  • 卷号:54
  • 期号:4
  • 页码:1077-1091
  • DOI:10.1194/jlr.M034421
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Glycosylphosphatidylinositol (GPI) enriches GPI-anchored proteins (GPI-AP) in lipid rafts by intimate interaction of its lipid moiety with sphingolipids and cholesterol. In addition to such lipid-lipid interactions, it has been reported that GPI may interact with protein moiety linked to GPI and affect protein conformations because GPI delipidation reduced immunoreactivities of protein. Here, we report that GPI-APs that have not undergone fatty acid remodeling exhibit reduced immunoreactivities in Western blotting, similar to delipidated proteins, compared with normal remodeled GPI-APs. In contrast, immunostaining in flow cytometry and immunoprecipitation did not show significant differences between remodeled and unremodeled GPI-APs. Moreover, detection with premixed primary/secondary antibody complexes or Fab fragments eliminated this difference in Western blotting. These results indicate that normally remodeled GPI enhanced oligomerization of GPI-APs and that inefficient oligomerization of unremodeled GPI-APs was responsible for reduced immunoreactivities. Moreover, the reduction in immunoreactivities of delipidated GPI-APs was most likely caused by the same effect. Finally, by chemical cross-linking of surface proteins in living cells and cell killing assay using a pore-forming bacterial toxin, we showed that enhanced oligomerization by GPI-remodeling occurs under a physiological membrane environment. Thus, this study clarifies the significance of GPI fatty acid remodeling in oligomerization of GPI-APs and provides useful information for technical studies of these cell components.
  • 关键词:PGAP3 ; lipid remodeling ; glycosylphosphatidylinositol
国家哲学社会科学文献中心版权所有