首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:An Overview of Extractive Based Automatic Text Summarization Systems
  • 本地全文:下载
  • 作者:Kanitha.D.K ; D. Muhammad Noorul Mubarak
  • 期刊名称:International Journal of Computer Science & Information Technology (IJCSIT)
  • 印刷版ISSN:0975-4660
  • 电子版ISSN:0975-3826
  • 出版年度:2016
  • 卷号:8
  • 期号:5
  • 页码:33
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:The availability of online information shows a need of efficient text summarization system. The textsummarization system follows extractive and abstractive methods. In extractive summarization, theimportant sentences are selected from the original text on the basis of sentence ranking methods. TheAbstractive summarization system understands the main concept of texts and predicts the overall ideaabout the topic. This paper mainly concentrated the survey of existing extractive text summarizationmodels. Numerous algorithms are studied and their evaluations are explained. The main purpose is toobserve the peculiarities of existing extractive summarization models and to find a good approach thathelps to build a new text summarization system.
  • 关键词:Text summarization; Abstractive summarization; Extractive summarization; Statistical methods; Latent;semantic analysis.
国家哲学社会科学文献中心版权所有